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Appendix W2.1.4
Complex Mechanical Systems

In some cases, mechanical systems contain both translational and rotational
portions. The procedure is the same as that described in Section 2.1: sketch
the free-body diagrams, define coordinates and positive directions, deter-
mine all forces and moments acting, and apply Eqs. (2.1) and/or (2.14).

EXAMPLE W2.1 Rotational and Translational Motion: Hanging Crane

Write the equations of motion for the hanging crane pictured in Fig. W2.1
and shown schematically in Fig. W2.2. Linearize the equations about

Figure W2.1
Crane with a hanging
load
Source: Photo courtesy of
Harnischfeger Corporation,
Milwaukee, Wisconsin
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32 Appendix W2.1.4 Complex Mechanical Systems

θ = 0, which would typically be valid for the hanging crane. Also linearize
the equations for θ = π , which represents the situation for the inverted
pendulum shown in Fig. W2.3.

Solution. A schematic diagram of the hanging crane is shown in Fig. W2.2,
while the free-body diagrams are shown in Fig. W2.4. In the case of the
pendulum, the forces are shown with bold lines, while the components of
the inertial acceleration of its center of mass are shown with dashed lines.
Because the pivot point of the pendulum is not fixed with respect to an iner-
tial reference, the rotation of the pendulum and the motion of its mass center
must be considered. The inertial acceleration needs to be determined because
the vector a in Eq. (2.1) is given with respect to an inertial reference. The
inertial acceleration of the pendulum’s mass center is the vector sum of the
three dashed arrows shown in Fig. W2.4b. The derivation of the components
of an object’s acceleration is called kinematics and is usually studied as a
prelude to the application of Newton’s laws. The results of a kinematic study
are shown in Fig. W2.4b. The component of acceleration along the pendulum
is lθ̇2 and is called the centripetal acceleration. It is present for any object
whose velocity is changing direction. The ẍ-component of acceleration is a
consequence of the pendulum pivot point accelerating at the trolley’s accel-
eration and will always have the same direction and magnitude as those of
the trolley’s. The lθ̈ component is a result of angular acceleration of the
pendulum and is always perpendicular to the pendulum.

These results can be confirmed by expressing the center of mass of the
pendulum as a vector from an inertial reference and then differentiating that
vector twice to obtain an inertial acceleration. Figure W2.4c shows î and ĵ

Figure W2.2
Schematic of the crane
with hanging load
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î

Figure W2.4
Hanging crane: (a) free-body diagram of the trolley; (b) free-body diagram of the pendulum; (c) position
vector of the pendulum

axes that are inertially fixed and a vector r describing the position of the
pendulum center of mass. The vector can be expressed as

r = xî + l(î sin θ − ĵ cos θ).

The first derivative of r is

ṙ = ẋî + lθ̇(î cos θ + ĵ sin θ).

Likewise, the second derivative of r is

r̈ = ẍî + lθ̈(î cos θ + ĵ sin θ)− lθ̇2(î sin θ − ĵ cos θ).

Note that the equation for r̈ confirms the acceleration components shown in
Fig.W2.4b. The lθ̇2 term is aligned along the pendulum pointing toward the
axis of rotation, and the lθ̈ term is aligned perpendicular to the pendulum
pointing in the direction of a positive rotation.

Having all the forces and accelerations for the two bodies, we now
proceed to apply Eq. (2.1). In the case of the trolley, Fig.W2.4a, we see that
it is constrained by the tracks to move only in the x-direction; therefore,
application of Eq. (2.1) in this direction yields

mtẍ + bẋ = u− N , (W2.1)

where N is an unknown reaction force applied by the pendulum. Conceptu-
ally, Eq. (2.1) can be applied to the pendulum of Fig. W2.4b in the vertical
and horizontal directions, and Eq. (2.14) can be applied for rotational motion
to yield three equations in the three unknowns: N , P, and θ . These three equa-
tions then can be manipulated to eliminate the reaction forces N and P so
that a single equation results describing the motion of the pendulum—that
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is, a single equation in θ . For example, application of Eq. (2.1) for pendulum
motion in the x-direction yields

N = mpẍ + mplθ̈ cos θ − mplθ̇2 sin θ . (W2.2)

However, considerable algebra will be avoided if Eq. (2.1) is applied
perpendicular to the pendulum to yield

P sin θ + N cos θ − mpg sin θ = mplθ̈ + mpẍ cos θ . (W2.3)

Application of Eq. (2.14) for the rotational pendulum motion, for which the
moments are summed about the center of mass, yields

−Pl sin θ − Nl cos θ = I θ̈ , (W2.4)

where I is the moment of inertia about the pendulum’s mass center. The
reaction forces N and P can now be eliminated by combining Eqs. (W2.3)
and (W2.4). This yields the equation

(I + mpl2)θ̈ + mpgl sin θ = −mplẍ cos θ . (W2.5)

It is identical to a pendulum equation of motion, except that it contains a
forcing function that is proportional to the trolley’s acceleration.

An equation describing the trolley motion was found in Eq. (W2.1), but
it contains the unknown reaction force N . By combining Eqs. (W2.2) and
(W2.1), N can be eliminated to yield

(mt + mp)ẍ + bẋ + mplθ̈ cos θ − mplθ̇2 sin θ = u. (W2.6)

Equations (W2.5) and (W2.6) are the nonlinear differential equations that
describe the motion of the crane with its hanging load. For an accurate
calculation of the motion of the system, these nonlinear equations need to
be solved.

To linearize the equations for small motions about θ = 0, let cos θ ∼= 1,
sin θ ∼= θ , and θ̇2 ∼= 0; thus the equations are approximated by

(I + mpl2)θ̈ + mpglθ = −mplẍ,

(mt + mp)ẍ + bẋ + mplθ̈ = u. (W2.7)

Neglecting the friction term b leads to the transfer function from the
control input u to the hanging crane angle θ :

θ(s)
U(s)

= −mpl
((I + mpl2)(mt + mp)− m2

pl2)s2 + mpgl(mt + mp)
. (W2.8)
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For the inverted pendulum in Fig. W2.3, where θ ∼= π , assume θ =
π+θ ′, where θ ′ represents motion from the vertical upward direction. In this
case, cos θ ∼= −1, sin θ ∼= −θ ′ in Eqs. (W2.5) and (W2.6), and Eqs. (W2.7)
become1Inverted pendulum

equations (I + mpl2)θ̈ ′ − mpglθ ′ = mplẍ,

(mt + mp)ẍ + bẋ − mplθ̈ ′ = u. (W2.9)

As noted in Example 2.2, a stable system will always have the same
signs on each variable, which is the case for the stable hanging crane modeled
by Eqs. (W2.7). However, the signs on θ and θ̈ in the top Eq. (W2.9) are
opposite, thus indicating instability, which is the characteristic of the inverted
pendulum.

The transfer function, again without friction, is
θ ′(s)
U(s)

= mpl
((I + mpl2)− m2

pl2)s2 − mpgl(mt + mp)
. (W2.10)

W2.1 Additional Problems for Translational and
Rotational Systems

Assume the driving force on the hanging crane of Fig. W2.2 is provided by a
motor mounted on the cab with one of the support wheels connected directly
to the motor’s armature shaft. The motor constants are Ke and Kt , and the
circuit driving the motor has a resistance Ra and negligible inductance. The
wheel has a radius r. Write the equations of motion relating the applied
motor voltage to the cab position and load angle.

Solution. The dynamics of the hanging crane are given by Eqs. (W2.5) and
(W2.6),

(
I + mpl2

)
θ̈ + mpgl sin θ = −mplẍ cos θ ,

(
mt + mp

)
ẍ + bẋ + mplθ̈ cos θ − mplθ̇2 sin θ = u,

where x is the position of the cab, θ is the angle of the load, and u is the
applied force that will be produced by the motor. Our task here is to find the
force applied by the motor. Normally, the rotational dynamics of a motor is

J1θ̈m + b1θ̇m = Tm = Ktia,

where the current is found from the motor circuit, which reduces to

Raia = Va − Keθ̇m

for the case where the inductance is negligible. However, since the motor
is geared directly to the cab, θm and x are related kinematically by

x = rθm

1The inverted pendulum is often described with the angle of the pendulum being positive for
clockwise motion. If defined that way, then reverse the sign on all terms in Eq. (W2.9) in θ ′
or θ̈ ′.
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and we can neglect any extra inertia or damping from the motor itself com-
pared to the inertia and damping of the large cab. Therefore we can rewrite
the two motor equations in terms of the force applied by the motor on the cab

u = Tm/r = Ktia/r,

ia = (Va − Keθ̇m)/Ra,

where
θ̇m = ẋ/r.

These equations, along with
(

I + mpl2
)

θ̈ + mpgl sin θ = −mplẍ cos θ ,
(
mt + mp

)
ẍ + bẋ + mplθ̈ cos θ − mplθ̇2 sin θ = u,

constitute the required relations.


